发布时间:2022-08-24 15:23:55来源:励普教育综合
达内Java大数据课程不仅要让学生掌握如何使用框架开发系统,而且要深入框架内部源代码,这样的做法为学生后续在企业通往架构师的道路做了很好的铺垫,学生可以更加自信的进入企业工作。
达内大数据课程体系在互联网架构方面涉及比较全面,既有负载均衡Nginx,也有基于搜索Solr,缓存Redis等。当学习完这些课程以后,已经对互联网架构有一定实操和熟练。
注重底层的学习,在学习hadoop之前,要先掌握NIO,RPC,AVRO等内容。同时还注重上层应用。既有基于电信的zebra项目,也有基于电商的大数据分析项目让学生通过大数据阶段的学习。
实战讲师
课程讲师
深圳大数据软件工程师培训班推荐哪家?小编推荐深圳达内IT培训机构。达内大数据课程特色:内容较全,技术深,涉及JavaEE架构级技术,分布式高并发技术,云计算架构技术,云计算技术,云计算架构技术等。提供真实的大数据云计算开发部署环境,学员可以拥有几十台主机节点以完成开发部署试验。o2o双模式教学体验,达内强大的TMOOC+ TTS8.0在线教学平台,为学员提供线下学习,线上辅助的双模式教学体验。
大数据工程处理技术介绍:
1、Hadoop
Hadoop是现今较早的也是历史较久的大数据处理技术框架,大数据真正从概念走向落地,就得益于Hadoop的出现。
Hadoop的主要的适用场景是大规模离线数据处理。Hadoop的MapReduce计算引擎,支持大规模数据并行处理。MapReduce计算将数据处理分为Map+Reduce两个阶段,分而治之,针对于TB级的数据计算任务,也能轻松完成。
2、Spark
Spark则是继Hadoop MapReduce之后的佼佼者,仍然属于批处理框架,但是却具有了流处理能力,更能满足大数据实时处理的需求。Spark是基于MapReduce计算模型的优化,通过完善的内存计算和处理优化机制加快批处理工作负载的运行速度。
并且,Spark可作为独立集群部署(需要相应存储层的配合),也可与Hadoop集成并取代MapReduce引擎。
3、Storm
Storm是真正意义上的流数据实时处理框架,基于低延时交互模式理念,以应对复杂的事件处理需求。和Spark不同,Storm可以进行单点随机处理,而不仅仅是微批量任务,并且对内存的需求更低。在实际应用场景当中,Storm经常和Kafka一起配合使用。
4、Flink
Flink可以新一代的热点技术框架,集批处理和流处理于一身的计算框架,将批处理数据视作具备有限边界的数据流,借此将批处理任务作为流处理的子集加以处理。
在业界,这种流处理为先的方法也叫做Kappa架构,Kappa架构中会对一切进行流处理,借此对模型进行简化,实现更的数据处理。
更多培训课程: 深圳大数据软件工程师培训班 更多学校信息: 深圳龙华新区达内IT培训机构 咨询电话: